Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Radiat Biol ; 97(9): 1299-1315, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34032553

RESUMO

PURPOSE: Combining gamma irradiation and nanotechnology has become one of the most promising new approaches for area-wide (AW) pest management in recent years. The laboratory trials were conducted to determine the combining effects of BT-AgNPs and gamma irradiation for controlling P. gossypiella. Radio-sensitivity of male pupae at different doses of gamma radiation and the effectiveness of biosynthesized silver nanoparticles using Bacillus thuringiensis on larval instar were assayed. Additionally, the ultrastructure changes on the alimentary canal of 4th instar larvae were studied to evaluate the impact of the combined approach at a cellular level. MATERIALS AND METHODS: Laboratory- rearing technique was used for rearing Pectinophora gossypiella. The irradiation process was achieved at Co60 - Gamma Chamber (4000 A). Alanine dosimeters were used for measuring the average absorbed dose and dose mapping. Preparation of Silver nanoparticles (AgNPs) using Bacillus thuringiensis (Bt) and their characterization has been investigated. The treated 4th instar larvae by gamma irradiation or ∕and BT-AgNPs were dissected under the stereo microscope. The alimentary canal was obtained anatomically and Transmission Electron Microscope) was used in examining the stained sections. RESULTS: Based on the nonhatching eggs produced by irradiated males' pupae, the values of effective doses were calculated. The effective doses ranged from 16 to 291 Gy for the ED25 - ED75. The sterility index reached 74.1% when irradiated with males by 291 Gy crossed with nonirradiated females and the adult emergence decreased to be 35.3%. The insecticidal potential of Bt-AgNPs on the 2nd and 4th larval instars was dose-dependent and its LC50 toxicity value was 0. 3 and 0. 4 mg/ml, respectively. The lethal concentration LC50 of the 2nd instar larvae increased the larval and pupal mortality to 55% and 44.4%, respectively, and reduced the adult emergence to be 55.6%. The combining effects of Bt-AgNPs with 291 Gy induced 100% pupae mortality and there was no adult emergence in F1 generation. Such effects also severed the ultrastructure deformity of the midgut of the 4th instar larvae after the two-day post-treatment. CONCLUSIONS: The combining effects are recommended as an effective IPM program to control P. gossypiella by releasing sterile males (derived from pupae irradiated with 291 Gy) crossing with the normal females in the field, and reducing the fertility of the population to 31.2%. Subsequently, the resulted larvae treated with LC50 of Bt-AgNPs prevented the adult emergence and stopped the life cycle of P. gossypiella.


Assuntos
Bacillus thuringiensis/metabolismo , Raios gama , Nanopartículas Metálicas , Mariposas/efeitos dos fármacos , Mariposas/efeitos da radiação , Prata/química , Prata/farmacologia , Animais , Larva/efeitos dos fármacos , Larva/efeitos da radiação , Controle de Pragas , Tolerância a Radiação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...